
Read the Docs Template
Documentation

Release 1.0

Read the Docs

Jan 08, 2021

Contents

1 About Faze4 3
1.1 General info . 3
1.2 Table of contents . 3
1.3 Check the arm in action ! . 6
1.4 Support the project . 6
1.5 Thanks to the: . 6

2 Design decisions 7
2.1 Number of axis . 7
2.2 Spherical wrist . 7
2.3 Cycloidal reducer . 7
2.4 Motor position . 12
2.5 Reduction ratios: . 13
2.6 Belts . 13

3 Building 15
3.1 BOM . 15
3.2 Actuator . 15

4 Printing 17
4.1 Filament . 17
4.2 Printer . 17
4.3 Print settings and tips . 17

5 Electronics, PCB and wiring 19
5.1 Faze4 distribution PCB V2 . 19
5.2 Board use guide . 21
5.3 PCB V1 (old, not recommended) . 21

6 Low level code 31
6.1 Tennsy environment setup . 31
6.2 Teensy low level code for testing in Matlab(live script) . 32
6.3 Teensy low level code for Matlab trajectory planning . 34
6.4 Teensy low level code for ROS . 34

7 High level code 35
7.1 Setting up Matlab . 35

i

7.2 Matlab code for testing in live script . 35
7.3 Matlab trajectory planning . 36
7.4 ROS . 36

8 Startup and setup 37

9 Robot data 39
9.1 General info . 39
9.2 Dimensions . 39
9.3 Reduction ratios: . 39
9.4 Belts . 39
9.5 Stepper data . 41
9.6 PSU . 41

ii

Read the Docs Template Documentation, Release 1.0

Contents:

Contents 1

Read the Docs Template Documentation, Release 1.0

2 Contents

CHAPTER 1

About Faze4

1.1 General info

Faze4 robotic arm came to be when i made a working 3d printable cycloidal gearbox and saw some potential in it.
After that i designed whole arm around it. It uses 6 stepper motors, so it is a 6 axis robot arm. While designing this
arm i focused on low backlash and good design of arm. All wires are hidden and arm is really rigid even tho it is 3d
printed. Total cost of the arm is around 1000 - 1500 dollars.

Note: This project is still work in progress. Part that is work in progress is control cabinet, that means that the arm
can be built and it will work without the cabinet.

Esthetic design was inspired by FANUC’s LR Mate 200iD. Goal was also to hide all wires in the arm like most
industrial arms do. Only visible wires (or pipes) would be ones for gripper.

Weight of the arm is around 14-15 kg , but it can be reduced by printing with less infill.

Low level control for the arm runs on teesny 3.5, while high level (inverse kinematics, simulations) are only on Matlab
code atm, but I am working on ROS implementation and porting my Matlab code to Python.

1.2 Table of contents

On this read the docs page you will find:

• How is arm desinged and desing decisions

• Printing tips

• Electronics guide and PCB

• Building instructions for the arm

• All code and programs used

• How to test and troubleshoot

3

Read the Docs Template Documentation, Release 1.0

4 Chapter 1. About Faze4

../docs/images/6163881566306270006.jpg

Read the Docs Template Documentation, Release 1.0

1.2. Table of contents 5

../docs/images/ruka_good_slika.jpg

Read the Docs Template Documentation, Release 1.0

• Sources

• Where to buy parts

1.3 Check the arm in action !

1.4 Support the project

This project is completely Open source and free to all and I would like to keep it that way, so any help in terms of
donations or advice is really appreciated. Thank you!

1.5 Thanks to the:

• Peter Corke for his amazing robotics toolbox for Matlab

• Maximilian_Schommer for his cycloidal drive generator

6 Chapter 1. About Faze4

https://paypal.me/PCrnjak?locale.x=en_US
https://petercorke.com/toolboxes/robotics-toolbox/
https://forum.onshape.com/discussion/7567/cycloidal-gear-generator

CHAPTER 2

Design decisions

2.1 Number of axis

I went with 6 axis because with 6+ axis we can reach same dot in space with different orientations. Both pictures show
arm at position x=0.3m , y=0.3m and z=0.2m but as you can see orientations are different.

2.2 Spherical wrist

This arm uses so called spherical wrist. Spherical wrist is configuration of joints where axes of rotation for joints 4,5,6
intersect. You can see that in picture below. It is complicated mechanical system that in turn simplifies solving inverse
kinematics for robot arm. You will see this configuration in a lot industrial robot arm.

All wires are routed thru the middle of the arm and cant be seen.

2.3 Cycloidal reducer

Why cycloidal reducers?

• They are really easy to 3d print

• can have large reduction ratio

• cheap

• low backlash even when 3d printed

Note: When 3d printing them there are few things to keep in mind but that is discussed in sections troubleshooting
and printing.

7

Read the Docs Template Documentation, Release 1.0

8 Chapter 2. Design decisions

../docs/images/180&60&30.png

Read the Docs Template Documentation, Release 1.0

2.3. Cycloidal reducer 9

../docs/images/30&180&90.png

Read the Docs Template Documentation, Release 1.0

10 Chapter 2. Design decisions

../docs/images/slikaosirotacije.png

Read the Docs Template Documentation, Release 1.0

2.3. Cycloidal reducer 11

../docs/images/reducer.jpg

Read the Docs Template Documentation, Release 1.0

2.4 Motor position

Firstly i wanted to move all motors to the base of the arm to reduce weight each motor should carry. First idea was
to just copy the design of this(link) kuka arm. I decided against that design and just went with probably most basic
design where every motor is directly on the joint of actuation (Except for joint 5 that i moved a little bit away).This is
not good idea actually and if I was redesigning this arm I would try to move at least joint 3 to the bottom of the arm,
but what is done is done.

Joints 1,4 and 5 use belts in addition to cycloidal reducers. Belts are mostly used to offset the place where joint will be
rotating so that we can route wires thru the body of robot. They also give some additional reduction ratio. For example
Joint 1 has 15:1 cyclo but with belt our reduction ratio jumps to 25:1.

12 Chapter 2. Design decisions

../docs/images/joints.png

Read the Docs Template Documentation, Release 1.0

2.5 Reduction ratios:

• Joint 1 -> 15:1 cycloidal reducer and 5:3 belt reduction = combined resulting in 25:1 reduction

• Joint 2 -> 27:1 cycloidal reducer

• Joint 3 -> 15:1 cycloidal reducer

• Joint 4 -> 11:1 cycloidal reducer and 28:26 belt reduction = combined resulting in 11.846153:1 reduction

• Joint 5 -> 11:1 cycloidal reducer and 1:1 belt reduction = combined resulting in 11:1 reduction

• Joint 6 -> 19.19:1 planetary reducer

2.6 Belts

• Joint 1 belt is HTD 5M 490 mm timing belt 10 mm wide and needs to be tightened with bearings

• Joint 4 belt is HTD 5M 430 mm timing belt 10 mm wide does not need to be tightened

• Joint 5 belt is HTD 5M 285 mm timing belt 10 mm wide and needs to be tightened with bearings

2.5. Reduction ratios: 13

Read the Docs Template Documentation, Release 1.0

14 Chapter 2. Design decisions

CHAPTER 3

Building

Note: All parts can be bought from ebay and similar online stores. I bought all steppers,drivers and PSUs from
stepper online. You can buy screws used for this arm in online stores but i sourced them locally and that was much
cheaper. I also recommend to buy wires (you will need them to extend stepper wires) locally since ones on ebay and
similar stores are of questionable quality.

• Full assembly instructions are here

3.1 BOM

You can find bom in this excel document and in building instructions file.

• BOM FILE

Tip: I also recommend to buy more items like bearinngs and screws than you need since you might destroy or damage
some in building process.

3.2 Actuator

Watch this video on how to assemble cycloidal actuators.

15

https://github.com/PCrnjak/Faze4-Robotic-arm
https://github.com/PCrnjak/Faze4-Robotic-arm

Read the Docs Template Documentation, Release 1.0

16 Chapter 3. Building

CHAPTER 4

Printing

4.1 Filament

I recommend PETG since it can withstand larger temperatures then PLA and is easier to print then ABS. Since motors
can heat up i think it is best choice.

4.2 Printer

All parts are designed to be printed on Prusa MK2S, so if you have printer with build volume of 250x210x200 you are
good to go.

4.3 Print settings and tips

I printed all smaller parts with 0.15 layer height and all larger with 0.35 layer height.For infill try to stay in 25%-30%
range. I used 3 outer perimeters and 7 top and 5 bottom layers.

Tip: When printing larger parts like: x x x , try to print at slower speeds and with small accelerations.Since those
parts are really large and heavy they tend to cause missing steps when reaching the end of 3d print due the inertia.

17

Read the Docs Template Documentation, Release 1.0

18 Chapter 4. Printing

../docs/images/IMG_20181220_075159.jpg

CHAPTER 5

Electronics, PCB and wiring

All electronics can also be bought from eBay and similar sites. I used cheap stepper drivers from eBay but you can
buy any stepper driver that can supply enough current for the steppers.

Check how i wired my arm in this file: FAZE4 Robotic arm electronics setup.pdf on github page: https://github.com/
PCrnjak/Faze4-Robotic-arm (These instructions are for V1 version of board that is not recommended)

Tip: From experience, i found out that cheaper stepper drivers tend to make more noise, so if you want a quiet robot
arm buy more expensive drivers. I foung ones from stepper online to be good.

5.1 Faze4 distribution PCB V2

Warning: To use code seen in videos and in github repo you will need to modify some pin definitions!

• Schematic

• Board STEP files

• Board dimensions

• Test Codes

Faze4 Distribution board V2 allows you to connect stepper drivers, limit switches, sensors, displays, microcontrollers,
computers, and more with each other with clean and simple wiring. It is designed for Faze4 robotic arm but you can
use it for any project from CNCs, 3D printers to use in the industrial assembly line.

It is designed to use the TEENSY 3.5 microcontroller but in near future, it will support boards like with STM32
microcontrollers and Atmegas. Read more about Teensy here: https://www.pjrc.com/store/teensy35.html

Board outputs have level shifters that boost 3v3 from the microcontroller to 5V. That allows you to use a larger set of
stepper drivers since they are usually designed for 5v logic. 5v is also much better for relays.

19

https://github.com/PCrnjak/Faze4-Robotic-arm
https://github.com/PCrnjak/Faze4-Robotic-arm
https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/Faze4_DIST_board_v2_files/Schematic.PDF
https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/Faze4_DIST_board_v2_files/Faze4_dist_v2_STEP.step
https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/Faze4_DIST_board_v2_files/Board_dimensions.PDF
https://github.com/PCrnjak/Faze4-Robotic-arm/tree/master/FAZE4_distribution_board_test_codes
https://www.pjrc.com/store/teensy35.html

Read the Docs Template Documentation, Release 1.0

20 Chapter 5. Electronics, PCB and wiring

../docs/images/slika1.jpg

Read the Docs Template Documentation, Release 1.0

Inputs for the board support limit switches and 24V sensors (like inductive, capacitive. . .) used in the industry. Inputs
are also isolated with optocouplers from a microcontroller and use current signals that ensure no voltage induction in
wires can accidentally trigger on microcontroller inputs that can cause errors and damage in real life. Inputs also have
LED indicators that tell you when the signal is present.

Board also has 2 UART ports routed that can extend its communication abilities.

It also supports typical 128x64 OLED displays.

When buying OLED display note the location of vcc and gnd pins.

• Order of pins should be: GND, vcc, SCL, SDA

• Check image below (LEFT ONE IS GOOD, RIGHT ONE IS BAD)

When connecting FTDI USB TTL Serial Adapter Module to PCB connect it like this. Board supports 2 modules
operating at the same time!

5.2 Board use guide

Connect your teensy 3.5 to board. Once connected it uses onboard 5v regulator on teensy to level shift all 3v3 signals
to 5v. If you see problems with stability of signals connect external 5V power source to the connector on the bottom
right corner.

To use inputs on top of the board you NEED 24V power source. Once you connect 24V power to the bottom right
connetor you can connect limit switches to the ports labled with (A1 B1, A2 B2, A3 B3 . . .) When connecting limit
switches connect one end of limit switch to the A1 and other end to B1. There are total of 6 ports for limit switch
inputs.

Ports labeled with HV_GND, SIGNAL, 24V are used by Industrial sensor that output 24V signal. One example is
inductive sensor.

There is one port on the right side and it is used for grippers. It outputs 3v3 signal.

5.3 PCB V1 (old, not recommended)

This PCB is first version and has some errors that will be fixed in revision 2. Board was created in Altium Circuitmaker
and all files can be found here:

Warning: I recommend waiting for next version since this one has alot of errors.

• All files for PCB

Upper section of PCB are Inputs for limit switches and inductive sensors. All inputs on top are isolated with optocou-
plers. I did that since all wires of the arm are going thru same spot, that means “high voltage” stepper wires were near
low voltage limit switch wires. That caused problems where steppers induced enough voltage on limit switch wires to
trigger interrupts on teensy. That is why limit switches and sensors are connected to 24v.

left side is for stepper outputs. There are also 2 stepper outputs on bottom right side.

Bottom right side has 5V input and 24V input. You need both for arm to work. In the middle we have few extra serial
ports and OLED display.

When wiring stepper drivers to the PCB i used TB6600 driver pinout as reference.I planned for all drivers to be
connected like picture below. HIGH signal on ENABLE + pin would enable stepper drivers. Now i made some
mistakes and not all drivers can be connected like that.

5.2. Board use guide 21

https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/Distribution_PCB.zip

Read the Docs Template Documentation, Release 1.0

22 Chapter 5. Electronics, PCB and wiring

../docs/images/slika4.jpg

Read the Docs Template Documentation, Release 1.0

5.3. PCB V1 (old, not recommended) 23

../docs/images/OLED.jpg

Read the Docs Template Documentation, Release 1.0

24 Chapter 5. Electronics, PCB and wiring

../docs/images/ftdi_im.jpg

Read the Docs Template Documentation, Release 1.0

5.3. PCB V1 (old, not recommended) 25

../docs/images/inductive.jpg

Read the Docs Template Documentation, Release 1.0

26 Chapter 5. Electronics, PCB and wiring

../docs/images/plocica_v1.jpg

Read the Docs Template Documentation, Release 1.0

5.3. PCB V1 (old, not recommended) 27

../docs/images/stepper_connection.png

Read the Docs Template Documentation, Release 1.0

Now i made some mistakes and not all drivers can be connected like that. In picture below you can see how to connect
all drivers. As you can see for joint 5 (connector below top one) i switched enable and puls pins. That means that
puls5 pin (pin 38 on teensy) is connected to puls pin on stepper driver. I also skipped Port that has no 5V level shifter
since it didnt work well.

After wiring all dir,puls and enable pins you are left with power pins on stepper driver and A- A+ B- B+ Pins. Those
are quite straightforward. Pins that have ext in name are extra pins that are now used in my version of arm.

28 Chapter 5. Electronics, PCB and wiring

Read the Docs Template Documentation, Release 1.0

5.3. PCB V1 (old, not recommended) 29

../docs/images/sim_plocica_with_labels.png

Read the Docs Template Documentation, Release 1.0

30 Chapter 5. Electronics, PCB and wiring

CHAPTER 6

Low level code

• Code is under MIT license: https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/LICENSE

• Matlab version used R2018a

• Robotic toolbox version: Robot-10.3.1

• Teensyduino version: Teensyduino, Version 1.53

• Teensy board used: 3.5

• Arduino IDE version: 1.8.13

Tip: You can scrap this code for parts and write much better code.

These codes are just proof of concept and must be handled with caution

Code for this robotic arm can be devided in 2 parts:

• Low level code

• High level code

Low level code is code that runs on our microcontroller (in our case teensy 3.5). Its main purpose is to receive
information from high level code and transform that information into useful signals for stepper drivers. That is a gross
simplification, but codes used will be explained in more detail below.

All code is in github repository.

6.1 Tennsy environment setup

Install arduino IDE: https://www.arduino.cc/en/main/software

Download Teensyduino from here: https://www.pjrc.com/teensy/td_download.html

Teensyduino is a software add-on for the Arduino software.

31

https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/LICENSE
https://www.arduino.cc/en/main/software
https://www.pjrc.com/teensy/td_download.html

Read the Docs Template Documentation, Release 1.0

6.2 Teensy low level code for testing in Matlab(live script)

Tip: You can scrap this code for parts and write much better code.

File is located at: Faze4-Robotic-arm/Software1/Low_Level_Arduino/Arduino_GUI_code.ino

It works together with Matlab code located at: Faze4-Robotic-arm/Software1/High_Level_Matlab/GUI_Matlab.mlx

In first 100 lines are pin definitions. They are made for first version of faze4 distribution board that is now legacy and
is replaced with second version that is also on sale here: * https://blestron.com/product/faze4-connector-boarad/

When power is applied to robot it will first perform homing routine. After all joints are homed it will
go to starting/start by postion. After that it is ready to receive data from Code located in: Faze4-Robotic-
arm/Software1/High_Level_Matlab/GUI_Matlab.mlx

Program is actually really simple. After homing we get data from matlab or any other source and then move robot
according to that data. As you can see in code bellow we call only 2 functions in main loop.

1 void loop() {
2

3 while (error == 0) {
4

5 get_data();
6 move_all();
7 }
8 }

But before we get to main loop robot needs to home. Now if robot starts moving away from its limit switches during
homing you need to stop it and do one of 2 things:

• Switch stepper motor phases

• change direction in software

After robot homes it goes to standy/start position.

In main loop move_all(); is based on functions like this:

1 if (needed_position[joint[1]] > current_position[joint[1]]) {
2 digitalWrite(dirPin[joint[1]], LOW);
3 move_routine_forward(joint[1]);
4

5 }
6 else if (needed_position[joint[1]] < current_position[joint[1]]) {
7 digitalWrite(dirPin[joint[1]], HIGH);
8 move_routine_backward(joint[1]);
9 }

What this snippet does is this: Code is always looping thru this code in main loop. If needed_position is same as
current_position nothing happens. If it is different we check if it is smaller or bigger and on those terms move_forward
or move_backward. Then we perform same code on all joints of robot arm.

Move routine works like this:

1 void move_routine_forward(int joint_num) {
2 currentMillis = micros();
3 #state is used to prevent triggering of this if statement twice in row
4 #same goes for second one , this secures perfect square wave form

(continues on next page)

32 Chapter 6. Low level code

https://blestron.com/product/faze4-connector-boarad/

Read the Docs Template Documentation, Release 1.0

6.2. Teensy low level code for testing in Matlab(live script) 33

../docs/images/arm_axes.png

Read the Docs Template Documentation, Release 1.0

(continued from previous page)

5 if (currentMillis - previousMillis[joint_num] >= current_pulse_widht[joint_num] and
→˓state[joint_num] == 0) {

6 previousMillis[joint_num] = currentMillis;
7 digitalWrite(stepPin[joint_num], HIGH);
8 state[joint_num] = 1;
9 }

10 else if (currentMillis - previousMillis[joint_num] >= (current_pulse_widht[joint_
→˓num]) and state[joint_num] == 1) {

11 previousMillis[joint_num] = currentMillis;
12 digitalWrite(stepPin[joint_num], LOW);
13 state[joint_num] = 0;
14 current_position[joint_num] = current_position[joint_num] + 1;
15 }
16 }

One step of stepper motor is defined by change from high to low signal on step pin. speed is defined by length of that
signals period. In this code we use micros as timer function. Lets say we want half period of our pulse to be 500 us.
Once we see 500us or more passed we switch step pin to HIGH and move state variable to low. We move that variable
low as an indicator that next 500 us will swtich pin to LOW. Now when we switch to LOW state goes to 0 and we
increment current position +1. This proces goes until move_all(); see that current_position = needed_position.

Now in normal operation robot can never hit limit switches if it hits them error variable in main loop goes to 1 and
robot locks. This is done as a simple safety feature. But it can be disabled by just removing that while (error == 0)
loop.

1 void loop() {
2

3 while (error == 0) {
4

5 get_data();
6 move_all();
7 }
8 }

6.3 Teensy low level code for Matlab trajectory planning

File can be found here: Faze4-Robotic-arm/Software1/Low_Level_Arduino/Robot_Arduino_trajectory/Robot_Arduino_trajectory.ino
Code is almost the same only thing that is done differently is protocol for sending and receiving data is a bit more
complex.

6.4 Teensy low level code for ROS

34 Chapter 6. Low level code

CHAPTER 7

High level code

• Code is under MIT license: https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/LICENSE

• Matlab version used R2018a

• Robotic toolbox version: Robot-10.3.1

These codes are best used to take parts from them to develop your own code or just to test the robot. They are clunky
and you must be really careful when using them on your robot.

High level code does all calculations and simulations. It will usually run on the PC since it will be doing a lot of
math and matrix multiplications. It will use some kind of inverse kinematics solver that will generate joint angles and
speeds. Again, gross simplification, but we will talk more about it later.

All code is in github repository.

7.1 Setting up Matlab

I used Robot-10.3.1 library version from Peter Corke. You can find it here: https://petercorke.com/resources/
downloads/ You need to install that libary to use codes used in this documentation.

7.2 Matlab code for testing in live script

File is located at: Faze4-Robotic-arm/Software1/High_Level_Matlab/GUI_Matlab.mlx

It works together with C/C++ Arduino file located at: Faze4-Robotic-
arm/Software1/Low_Level_Arduino/Arduino_GUI_code.ino

When you run this live script it allows you to control robot using sliders and test all joints that way. It also shows
simulated robot in Matlab window.Script will give back error if connection is not made with robot arm.

35

https://github.com/PCrnjak/Faze4-Robotic-arm/blob/master/LICENSE
https://petercorke.com/resources/downloads/
https://petercorke.com/resources/downloads/

Read the Docs Template Documentation, Release 1.0

1 #Here you need to change your COM port to one your arm is connected to
2 delete(instrfind);
3 x=serial('COM12','BaudRate', 9600);
4 fopen(x)

Here we Create model of robot arm. If you are using gripper on robot change Gripping point to your value.

1 gripping_point = 0.057 ;
2 L(1) = Link([0 0.23682 0 pi/2]);
3 L(2) = Link([0 0 0.32 0]);
4 L(3) = Link([0 0 0.0735 pi/2]);
5 L(4) = Link([0 0.2507 0 -pi/2]);
6 L(5) = Link([0 0 0 pi/2]);
7 L(6) = Link([0 gripping_point 0 0]);
8 robot = SerialLink(L);
9 robot.name='faze4';

Now if you dont want to send data to robot you can make print in code bellow = 0. You would do this if you want to
adjust to your robots zero position or move all joints at once.

1 if(print == 1)
2 fwrite(x,Start,'char');
3 fwrite(x,Start,'char');
4 for i = 1:6

7.3 Matlab trajectory planning

Files are located in: Faze4-Robotic-arm/Software1/High_Level_Matlab/Trajectory_Matlab/ C/C++ Arduino files are
in: Faze4-Robotic-arm/Software1/Low_Level_Arduino/Robot_Arduino_trajectory/

As seen in this video: https://www.youtube.com/watch?v=0We33vvnHSE&t=6s&ab_channel=PetarCrnjak

Code is used to make a trajectory that arm will follow. Structure of the code is devided in logical sub files:

• Robot_angular_vel.mlx

• Robot_calculate_angles.mlx

• Robot_ik_code_1.mlx

• Robot_path.mlx

• Robot_plot_angles_velocity.mlx

• Robot_sending.m

• Robot_setup.mlx

• Robot_simulation.m

• Robot_trajectory.mlx

Robot_ik_code_1.mlx is main file. From there you can remove and add what stepts to do. For example if you
dont want to send data to robot just comment out Robot_sending. If you dont want to simulate robot comment out
Robot_simulation. . .

7.4 ROS

36 Chapter 7. High level code

https://www.youtube.com/watch?v=0We33vvnHSE&t=6s&ab_channel=PetarCrnjak

CHAPTER 8

Startup and setup

holder

37

Read the Docs Template Documentation, Release 1.0

38 Chapter 8. Startup and setup

CHAPTER 9

Robot data

9.1 General info

9.2 Dimensions

• L1 = 0.23682m

• L2 = 0.32m

• L3 = 0.0735m

• L4 = 0.2507m

• L5 = 0.057m

9.3 Reduction ratios:

• Joint 1 -> 15:1 cycloidal reducer and 5:3 belt reduction = combined resulting in 25:1 reduction

• Joint 2 -> 27:1 cycloidal reducer

• Joint 3 -> 15:1 cycloidal reducer

• Joint 4 -> 11:1 cycloidal reducer and 28:26 belt reduction = combined resulting in 11.846153:1 reduction

• Joint 5 -> 11:1 cycloidal reducer and 1:1 belt reduction = combined resulting in 11:1 reduction

• Joint 6 -> 19.19:1 planetary reducer

9.4 Belts

• Joint 1 belt is HTD 5M 490 mm timing belt 10 mm wide and needs to be tightened with bearings

39

Read the Docs Template Documentation, Release 1.0

40 Chapter 9. Robot data

../docs/images/robot_dim.png

Read the Docs Template Documentation, Release 1.0

• Joint 4 belt is HTD 5M 430 mm timing belt 10 mm wide does not need to be tightened

• Joint 5 belt is HTD 5M 285 mm timing belt 10 mm wide and needs to be tightened with bearings

9.5 Stepper data

9.6 PSU

9.5. Stepper data 41

	About Faze4
	General info
	Table of contents
	Check the arm in action !
	Support the project
	Thanks to the:

	Design decisions
	Number of axis
	Spherical wrist
	Cycloidal reducer
	Motor position
	Reduction ratios:
	Belts

	Building
	BOM
	Actuator

	Printing
	Filament
	Printer
	Print settings and tips

	Electronics, PCB and wiring
	Faze4 distribution PCB V2
	Board use guide
	PCB V1 (old, not recommended)

	Low level code
	Tennsy environment setup
	Teensy low level code for testing in Matlab(live script)
	Teensy low level code for Matlab trajectory planning
	Teensy low level code for ROS

	High level code
	Setting up Matlab
	Matlab code for testing in live script
	Matlab trajectory planning
	ROS

	Startup and setup
	Robot data
	General info
	Dimensions
	Reduction ratios:
	Belts
	Stepper data
	PSU

